Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations
نویسندگان
چکیده
The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival.
منابع مشابه
Eco-evolutionary dynamics of social dilemmas.
Social dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature. Both costs and benefits often depend non-linearly on the number and types of in...
متن کاملEco-evolutionary dynamics of complex social strategies in microbial communities
Microbial communities abound with examples of complex social interactions that shape microbial ecosystems. One particularly striking example is microbial cooperation via the secretion of public goods. It has been suggested by theory, and recently demonstrated experimentally, that microbial population dynamics and the evolutionary dynamics of cooperative social genes take place with similar time...
متن کاملThe Lobbying, Bribery, and Compliance: An Evolutionary Model of Social Factors
Abstract Connecting to rule-makers in order to set favorable rules (lobbying) or paying government executives to bend the current rule (bribing) are the two main strategies for influencing government. This study in an evolutionary game model explain why bribing may become widespread while other states like compliance and cooperative lobbying are Pareto superior. The theoretical model is used ...
متن کاملArtificial Life 13
We introduce replicator-mutator mechanisms from evolutionary dynamics into a two-dimensional daisyworld model, thereby coupling evolutionary changes with daisyworld’s bidirectional feedback between biota and environment. Daisyworld continues to self-regulate in the presence of these evolutionary forces. The most interesting behaviours, exhibiting a complex and dynamic dance through space and ti...
متن کاملSocial interaction in synthetic and natural microbial communities
Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural micr...
متن کامل